Planar waveguide-coupled, high-index-contrast, high-Q resonators in chalcogenide glass for sensing.
نویسندگان
چکیده
High-index-contrast compact microdisk resonators in thermally evaporated As2S3 and Ge17Sb12S71 chalcogenide glass films are designed and fabricated using standard UV lithography and characterized. Our pulley coupler configuration demonstrates coupling of the resonators to monolithically integrated photonic wire waveguides without resorting to demanding fine-line lithography. Microdisk resonators in As2S3 support whispering-gallery-mode with cavity quality factors (Q) exceeding 2 x 10(5), the highest Q value reported in resonator structures in chalcogenide glasses to the best of our knowledge. We have successfully demonstrated a lab-on-a-chip prototype sensor device with the integration of our resonator with planar microfluidic systems. The sensor shows a refractive index sensitivity of 182 nm/RIU (refractive index unit) and a wavelength resolution of 0.1 pm through a resonant peak fit. This corresponds to a refractive index detection limit of 8 x 10(-7) RIU at 1550 nm in wavelength, which could be further improved by shifting the operating wavelength to a region where water absorption is reduced.
منابع مشابه
Demonstration of high-Q mid-infrared chalcogenide glass-on-silicon resonators.
We demonstrated high-index-contrast, waveguide-coupled As2Se3 chalcogenide glass resonators monolithically integrated on silicon fabricated using optical lithography and a lift-off process. The resonators exhibited a high intrinsic quality factor of 2×10(5) at 5.2 μm wavelength, which is among the highest values reported in on-chip mid-infrared (mid-IR) photonic devices. The resonator can serve...
متن کاملIntegrated chalcogenide waveguide resonators for mid-IR sensing: leveraging material properties to meet fabrication challenges.
In this paper, attributes of chalcogenide glass (ChG) based integrated devices are discussed in detail, including origins of optical loss and processing steps used to reduce their contributions to optical component performance. Specifically, efforts to reduce loss and tailor optical characteristics of planar devices utilizing solution-based glass processing and thermal reflow techniques are pre...
متن کاملDemonstration of chalcogenide glass racetrack microresonators.
We have demonstrated what we believe to be the first chalcogenide glass racetrack microresonator using a complementary metal-oxide semiconductor-compatible lift-off technique with thermally evaporated As(2)S(3) films. The device simultaneously features a small footprint of 0.012 mm x 0.012 mm, a cavity Q (quality factor) of 10,000, and an extinction ratio of 32 dB. These resonators exhibit a ve...
متن کاملFabrication and testing of planar chalcogenide waveguide integrated microfluidic sensor.
We have fabricated and tested, to the best of our knowledge, the first microfluidic device monolithically integrated with planar chalcogenide glass waveguides on a silicon substrate. High-quality Ge(23)Sb(7)S(70) glass films have been deposited onto oxide coated silicon wafers using thermal evaporation, and high-index-contrast channel waveguides have been defined using SF(6) plasma etching. Mic...
متن کاملSilicon-waveguide-coupled high-Q chalcogenide microspheres.
We fabricate high-Q arsenic triselenide glass microspheres through a three-step resistive heating process. We demonstrate quality factors greater than 2 x 10(6) at 1550 nm and achieve efficient coupling via a novel scheme utilizing index-engineered unclad silicon nanowires. We find that at powers above 1 mW the microspheres exhibit high thermal instability, which limits their application for re...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Optics letters
دوره 33 21 شماره
صفحات -
تاریخ انتشار 2008